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VGP351 – Week 2

⇨ Agenda:
­ Getting data to the GPU
­ Types of primitives
­ Transformations

­ Modeling
­ Viewing
­ Projection
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Vertex Memory

⇨ Practically, the GPU can only access:
­ Memory physically on the graphics card
­ Memory mapped in the GART

⇨ To get GART or card memory, we have to 
allocate it using the driver

­ Only the driver knows what kind of memory to use
­ ...but we have to give it some hints
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Vertex Memory

⇨ In OpenGL this memory is called buffer object
­ It is used somewhat like a file:

­ Bulk I/O via accessor routines
­ Direct mapping and access via a pointer
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Buffer Objects

⇨ Generate “names” for the buffer objects:
glGenBuffers(GLsizei num, Gluint *names);

⇨ “Bind” a buffer for use:
glBindBuffer(GLenum target, GLuint name);

­ target selects which buffer we're talking about
­ GL_ARRAY_BUFFER is used for vertex data

­ GL_ELEMENT_ARRAY_BUFFER is used for vertex indices
­ More on that later...

­ There are other targets we'll cover later in the term

­ Binding creates the object, but it still has no storage
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Buffer Objects

⇨ Storage is created and optionally initialized with:
void glBufferData(GLenum target,
    GLsizeiptr size, const GLvoid *data,
    GLenum usage);

­ usage tells the GL how the app will utilize the buffer

⇨ Storage is updated with:
void glBufferSubData(GLenum target,
    GLintptr offset, GLsizeiptr size,
    const GLvoid *data);
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Buffer Objects

⇨ Usage conveys information along two axes:
­ Data “frequency”:

­ Stream – data is specified once and used a few times

­ Static – data is specified ones and used many times

­ Dynamic – data is specified and used many times

­ Data “usage”:
­ Draw – data used as source for drawing

­ Read – data copied from GL and read back to client

­ Copy – data copied from GL and used as source for drawing

­ Combine these to create the enums (e.g., 
GL_STATIC_DRAW)



© Copyright Ian D. Romanick 2009

14-October-2009



© Copyright Ian D. Romanick 2009

14-October-2009

Buffer Objects

⇨ Memory backing the buffer can be mapped into 
CPU space:
GLvoid *glMapBuffer(GLenum target,
                    GLenum access);

­ access tells the driver how the application will access 
the mapped buffer:

­ GL_READ_ONLY

­ GL_WRITE_ONLY

­ GL_READ_WRITE

⇨ Unmap the buffer with:
GLboolean glUnmapBuffer(GLenum target);
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Now what?

⇨ The vertex data is in a buffer object...how do we 
tell the GPU know where to get it?
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

In the API, 
attributes are 

numbered
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

Number of components 
in each element

Type of data (e.g., 
GL_FLOAT)
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

For integer data, 
specifies whether it 
is normalized or not
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

Number of bytes from 
the start of one element 
to the start of the next
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Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute 
with:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

Offset, in bytes, from the 
start of the buffer where 

the data starts
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Enable Attribute

⇨ Attributes that will be used must also be 
enabled:
void glEnableVertexAttribArray(GLuint index);

⇨ Attributes can later be disabled:
void glDisableVertexAttribArray(GLuint index);
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Setting Attribute Numbers

⇨ GLSL uses names for attributes:
attribute vec4 color;

⇨ The API uses numbers:
void glVertexAttribPointer(GLuint index,
    GLint size, GLenum type,
    GLboolean normalized, GLsizei stride,
    const GLvoid *pointer);

⇨ How do we connect the two?
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Setting Attribute Numbers

⇨ Bind the attribute name to the index we want:
void glBindAttribLocation(GLuint programObj,
    GLuint index, const GLchar *name);

­ Can only call before linking the program
­ Changes to attribute locations do not take effect until 

the program is linked (or linked again)
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Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
    GLsizei count);
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Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
    GLsizei count);

Sets the primitive type
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Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
    GLsizei count);

Selects which vertex 
in the buffer to start 

drawing with

Number of 
vertices to draw
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Primitive Types

Image borrowed from “OpenGL Programming Guide”.
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Primitive Types

Image borrowed from “OpenGL Programming Guide”.

X X X
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References

⇨ More information about I/O MMUs in general:
http://en.wikipedia.org/wiki/IOMMU

⇨ Nvidia whitepaper about using VBOs:
http://developer.nvidia.com/object/using_VBOs.html

http://en.wikipedia.org/wiki/IOMMU
http://developer.nvidia.com/object/using_VBOs.html


© Copyright Ian D. Romanick 2009

14-October-2009

Linear Algebra Primer

⇨ Three important data types:
­ Scalar values
­ Row / column vectors

­ 1x4 and 4x1 are the most common sizes

­ Square matrices
­ 4x4 is the most common size...to match the 1x4 & 4x1 

vectors
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Notation

⇨ Try to use the same notation as the textbook:
­ Angle:  (lower-case Greek)
­ Scalar: s (lower-case, italic, serif)
­ Vector or point: v (lower-case, bold, serif)

­ Sometimes û is used to differentiate vectors from points

­ Matrix: M (upper-case, bold, serif)
­ Plane: : nx + d (: a vector and a scalar)
­ Triangle: △abc (△ 3 points)
­ Line segment: ab (2 points)
­ Geometric entity: A (upper-case, italic, serif)
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Row Vectors

⇨ These are special matrices that have multiple 
columns but only one row

­ Example:

⇨ Addition and subtraction is component-wise:
­ Example:
­ Both vectors must be the same size

⇨ Operations with scalars also component-wise:
­ Example:

⇨ Notice that vector multiplication is missing...

[5.0 3.14 37 ]

[1 2 3 ][9 10 11 ]=[10 12 14 ]

3.2×[1 2 3 ]=[3.2 6.4 9.6 ]
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Column Vectors

⇨ These are special matrices that have multiple 
rows but only one column

­ Example:

⇨ Work just like row vectors
⇨ Notationally convert a row to a column with a T 

in the exponent
­ Example: vT

­ We'll talk more about this notation later...

[
1
2
3]
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Vector Operations

⇨ There are a few operations specific to vectors 
that are really important to graphics:

­ Dot product
­ Vector magnitude / normalization
­ Cross product
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Dot Product

⇨ Component-wise multiply, then sum components
­ Example:

­ Noted as uv or u, v
­ Also known as the inner product or scalar product

[2.3 1.2 ]⋅[1.7 6.5 ]=2.3∗1.71.2∗6.5=11.71
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Vector Magnitude

⇨ Noted by vertical bars around the vector
­ Like absolute value...which is the scalar magnitude
­ Can also be thought of as the length of the vector

⇨ Square-root of dot-product of vector with itself
­ Like absolute value
­ Example: ∣[ 2

2
2
2 ]∣=[ 2

2
2
2 ]⋅[ 2

2
2
2 ]=

 2
2 

2

 2
2 

2

= 2
4


2
4
=1
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Normal

⇨ Normal is an overloaded term in graphics and 
linear algebra

­ Sometimes it means a vector has unit length
­ |u| = 1.0
­ Can say the vector is “normalized”

­ Sometimes it means a vector is perpendicular to a 
surface or another vector

­ This mean the angle between the vectors is 90˚
­ Can say that the vectors are “normal to each other”
­ Can say that the vectors are “orthogonal”

­ Can combine for even more fun!
­ “Use normalized surface normals in the calculation.”
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Normalize

⇨ Can normalize a vector by dividing it by its 
magnitude

­ Example:

­ Vector has the same direction, but the magnitude will 
be 1.0

­ Also works with scalars

u
∣u∣



© Copyright Ian D. Romanick 2009

14-October-2009

Dot Product

⇨ Why is the dot product so interesting?
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Dot Product

⇨ Why is the dot product so interesting?
­ The dot product of two vectors is related to the cosine 

of the angle between those vectors
­ Formally: uv = |u| |v| cos 

⇨ We often want to know the angle between two 
vectors

­ This is the basis of all lighting calculations in 3D 
graphics!

­ (uv) / (|u| |v|) = cos 
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Cross Product

⇨ From Wikipedia:
[T]he cross product is a binary operation on two vectors in a 
three-dimensional Euclidean space that results in another 
vector which is perpendicular to the plane containing the two 
input vectors.

­ Noted as an × between two vectors
­ Calculated as:

­ Not associative
­ Anti-commutative: If u×v = w, then u×v = -w

a×b=[ay bz−az by az bx−ax bz ax by−ay bx ]

1 From http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Cross_product
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Cross Product

⇨ Why is the cross product so interesting?
­ Cross product of two vectors results in a new vector 

that is normal both
­ The cross product of two vectors is related to the sine 

of the angle between the vectors
­ Formally: u×v = |u| |v| sin  n

θ

n

u

v
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Matrices

⇨ Like vectors, but have multiple rows and 
columns

­ Example:

⇨ Add and subtract like you would expect
­ Like vectors, both matrices must be the same size...in 

both dimensions

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]
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Matrix Multiplication

⇨ Special rules make matrix multiplication different 
from scalar multiplication

­ NOT commutative!  e.g., M×N ≠ N×M
­ Associative  e.g., A(BC) = (AB)C
­ Column count of first matrix must match row count of 

second matrix
­ If M is 4-by-3 matrix and N is a 3-by-1 matrix, we 

can do M×N but not N×M
­ If the source matrices are n-by-m and m-by-p, the 

resulting matrix will be n-by-p
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Matrix Multiplication

⇨ To calculate an element of the matrix, C, 
resulting from AB:

⇨ What does this look like?

Cij = r=1
n A ir Brj

= A i ,0 B0, jA i ,1 B1, jA i ,2 B2, j...Ai ,n Bn , j
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Matrix Multiplication

⇨ To calculate an element of the matrix, C, 
resulting from AB:

⇨ What does this look like?
­ The dot product of a row of A with a column of B!
­ This is why the column count of A must match the row 

count of B...otherwise the dot product wouldn't work

Cij = r=1
n A ir Brj

= A i ,0 B0, jA i ,1 B1, jA i ,2 B2, j...Ai ,n Bn , j
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Multiplicative Identity

⇨ There is a multiplicative identity for matrices

­ Just like any other multiplicative identity, AI = A
­ If you pretend that a scalar is a 1×1 matrix, this 

should make sense

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]
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Transpose

⇨ Rows become columns and columns become 
rows

­ Noted with a T in the exponent position (e.g., MT)
­ Example:

[
2 3
4 5
6 7 ]

T

=[2 4 6
3 5 7]
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Matrix Multiplication

⇨ Can rewrite the dot product (inner product) of 
two row vectors as:

⇨ Can write the outer product of two row vectors 
as:

­ Notation is u⊗v

s=u vT

M=uT v

u⊗v=[
u1 v1 u1 v2 u1 v3 ... u1 vn

u2 v1 u2 v2 u2 v3 ... u2 vn

⋯ ⋯ ⋱ ⋯
um v1 um v2 um v3 ... um vn

]
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Matrix Multiplication

⇨ Not commutative

⇨ But...

⇨ How is this useful?

M×N≠N×M

M×N=NT×MT 
T
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Matrix Multiplication

⇨ Not commutative

⇨ But...

⇨ How is this useful?
­ Assume v is a vector we want to transform by a matrix 

M, but we only have MT in our program...

­ A vector and its transpose are represented the same 
way (vec4 in GLSL), so we don't have to do the 
transpose of the matrix

M×N≠N×M

M×N=NT×MT 
T

M×v=vT×MT 
T
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References

http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Outer_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Outer_product
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Rotation

⇨ Rotation around the Z-axis
­ If  is 0˚, this is the identity 

matrix [
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]

[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]

⇨ Rotation around the Y-axis
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Rotation

⇨ From the previous equations, we can rotate 
using 4 multiplies and 2 adds, but a matrix 
multiply requires 16 multiplies and 12 adds

­ x' = x cos  + y sin 
­ y' = -x sin  + y cos 
­ z' = z

⇨ Why use the matrix method?
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Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '

M3 M2M1 v 
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Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

­ Matrix multiplication is associative!

M3 M2M1 v 

M3 M2 M1v

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '
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Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

­ Matrix multiplication is associative!

M3 M2M1 v 

M3 M2 M1v

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '
Notice that the matrices 
are composed in the 
reverse order of how 
they are applied to the 
vector!
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Arbitrary Rotation

⇨ Given a vector, v, and an angle, , we can 
create an arbitrary rotation matrix:

V=[
0 −vz vy 0
vz 0 −vx 0

−vy vx 0 0
0 0 0 1

]
R=I cos −1−cosv⊗v  V sin 
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Translation

⇨ Points are stored as p = [ x y z 1 ]
⇨ Remember the definition of matrix multiplication:

⇨ Since p
w
 is always 1, the 4th column of the matrix 

acts as a translation

px ' = px M11py M12pz M13pw M14

py ' = px M21py M22pz M23pw M24

pz ' = px M31py M32pz M33pw M34

pw ' = px M41py M42pz M43pw M44
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Scaling

⇨ To scale a vector, multiply 
each component by a scale 
factor M=[

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

]
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Coordinate Spaces

⇨ Coordinates are always relative to some “space”
­ Object space: Local coordinate system of the object
­ World space: Global coordinate system relative to the 

3D “world”
­ Eye / camera space: Coordinate system relative to 

the viewer

⇨ When we translate objects relative to other 
objects, we may talk about other spaces

­ If the hand of a 3D model is rotated relative to the arm 
of the model, we may talk about “hand-space” or 
“arm-space”
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Orthonormal Basis

⇨ It's a mouthful...what does it mean?
⇨ A vector space where all of the components are 

orthogonal to each other, and each is normal
­ Normal meaning unit length
­ Orthogonal meaning at right angles

­ The other meaning of normal

⇨ Every pure rotation matrix (i.e., no scaling) is an 
orthonormal basis

­ As is the identity matrix
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Viewing

⇨ Q: Given a world position for a camera, a world 
position to point the camera at, and an “up” 
direction, how can we construct a transformation 
using just rotations and translations?
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Viewing

⇨ Q: Given a world position for a camera, a world 
position to point the camera at, and an “up” 
direction, how can we construct a transformation 
using just rotations and translations?

⇨ A: We can't.  We need 3 vectors to construct an 
orthonormal basis

­ [Hughes 99] presents a method to construct from just 
one vector
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Viewing

⇨ Given:
­ e: Position of the eye (or camera) in world-space
­ v: The point being viewed
­ u: the “up” direction

⇨ Calculate the unit vector from the viewpoint to 
the eye:

­ This is the Z axis

f ' = v−e

f =
f '
∣f '∣
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Viewing

⇨ Calculate a vector orthogonal to the Z-axis and 
the up vector:

­ This is the X-axis

s=f×u
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Viewing

⇨ Calculate a vector orthogonal to the Z-axis and 
the up vector:

­ This is the X-axis

⇨ Calculate a vector orthogonal to the X-axis and 
the Z-axis:

­ This is the Y-axis
­ Why can't we just use u?

t=s×f

s=f×u
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Viewing

⇨ Drop these vectors into a matrix:

­ The translation moves the eye to the origin

Mv=[
s0 s1 s2 0
t0 t1 t2 0
−f0 −f1 −f2 0

0 0 0 1
]×[

1 0 0 −e0

0 1 0 −e1

0 0 1 −e2

0 0 0 1
]
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References

General information about rotation matrices and orthonormal bases:

http://en.wikipedia.org/wiki/Rotation_matrix

http://www.wikipedia.org/Orthonormal_basis

Really good explanation of arbitrary rotation matrices:
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm

Hughes, J. F., and Möller, T. Building an Orthonormal Basis from a 
Unit Vector. Journal of Graphics Tools 4, 4 (1999), 33-35. 
http://www.cs.brown.edu/research/pubs/authors/john_f._hughes.html

http://en.wikipedia.org/wiki/Rotation_matrix
http://www.wikipedia.org/Orthonormal_basis
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
http://www.cs.brown.edu/research/pubs/authors/john_f._hughes.html


© Copyright Ian D. Romanick 2009

14-October-2009

Projection

⇨ Once objects are transformed to camera-space, 
they're still 3D

­ The screen is still 2D
­ Camera parameters (e.g., field of view) need to be 

applied

⇨ Three steps remain:
­ Projection from camera space to normalized device 

coordinates (NDC)
­ Perspective divide
­ Conversion from NDC to screen coordinates

­ Remaps the ±1 cube to (0,0)-(width, height)
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Projection

⇨ Perspective:
­ Simulates visual foreshortening caused by the way 

light projects onto the back of the eye
­ Represents the view volume with a frustum (a 

pyramid with the top cut off)
­ The real work is done by dividing X and Y by Z

⇨ Orthographic:
­ Represents the view volume with a cube
­ Also called parallel projection because lines that are 

parallel before the projection remain parallel after
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Perspective Projection

⇨ A few parameters control the view volume:
­ Near: Distance from the camera to the near viewing 

plane.  Objects in front of this plane will be clipped
­ Far: Distance from the camera to the far viewing 

plane.  Objects behind this plane will be clipped

w

h

Near

Far

­ : Field-of-view in 
the Y direction

­ Aspect ratio: Ratio 
of the width of the 
view to the height 
of the view



© Copyright Ian D. Romanick 2009

14-October-2009

Perspective Projection

f =cot  2 

M p=[
f

aspect
0 0 0

0 f 0 0

0 0 −
farnear
far−near

−
2×far×near

far−near
0 0 −1 0

]
­ Limited form of projection matrix that assumes 

symmetry in X and Y directions
­ near and far are distances

­ We're actually looking down the negative Z axis in camera 
space
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Putting it all together

⇨ Typically have a modeling transform, a viewing 
transform, and a projection

­ Combine these into a single “model-view-projection” 
matrix: M

mvp
 = M

p
  M

v
  M

m

­ Transform a vertex by this single matrix:
uniform mat4 mvp;
void main(void)
{
        gl_Position = mvp * gl_Vertex;
}
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Next week...

⇨ Quiz #1
­ Will cover material from last week and this week

⇨ Hidden surface removal / occlusion
­ Backface culling
­ Painters algorithm
­ Z-buffer
­ Frustum culling

⇨ Assignment #2, part 1
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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