VGP351 - Week 2

\downarrow Agenda:

- Getting data to the GPU
- Types of primitives
- Transformations
- Modeling
- Viewing
- Projection

Graphics Pipeline

Graphics Pipeline

Memory Architecture

Memory Architecture

Registers
L1 Cache

L2 / L3 Cache

System Chipset

Unified Memory Architecture

Registers
L1 Cache

L2 / L3 Cache

I/O Devices	System Chipset	
		GPU

Main Memory

14-October-2009
© Copyright Ian D. Romanick 2009

Memory Map

Memory Map

Device
Virtual Addresses

Virtual Addresses

Vertex Memory

\Rightarrow Practically, the GPU can only access:

- Memory physically on the graphics card
- Memory mapped in the GART
\Rightarrow To get GART or card memory, we have to allocate it using the driver
- Only the driver knows what kind of memory to use
- ...but we have to give it some hints

Vertex Memory

\Rightarrow In OpenGL this memory is called buffer object

- It is used somewhat like a file:
- Bulk I/O via accessor routines
- Direct mapping and access via a pointer

Buffer Objects

〉 Generate "names" for the buffer objects:
glGenBuffers(GLsizei num, Gluint *names);
》 "Bind" a buffer for use:
glBindBuffer(GLenum target, GLuint name);

- target selects which buffer we're talking about
- GL_ARRAY_BUFFER is used for vertex data
- GL_ELEMENT_ARRAY_BUFFER is used for vertex indices - More on that later...
- There are other targets we'll cover later in the term
- Binding creates the object, but it still has no storage

Buffer Objects

s Storage is created and optionally initialized with:
void glBufferData(GLenum target, GLsizeiptr size, const GLvoid *data, GLenum usage);

- usage tells the GL how the app will utilize the buffer
\downarrow Storage is updated with:

> void glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const GLvoid *data);

Buffer Objects

¢ Usage conveys information along two axes:

- Data "frequency":
- Stream - data is specified once and used a few times
- Static - data is specified ones and used many times
- Dynamic - data is specified and used many times
- Data "usage":
- Draw - data used as source for drawing
- Read - data copied from GL and read back to client
- Copy - data copied from GL and used as source for drawing
- Combine these to create the enums (e.g., GL_STATIC_DRAW)

14-October-2009
© Copyright Ian D. Romanick 2009

Buffer Objects

¢ Memory backing the buffer can be mapped into CPU space:

```
GLvoid *glMapBuffer(GLenum target,
                                    GLenum access);
```

- access tells the driver how the application will access the mapped buffer:
- GL_READ_ONLY
- GL_WRITE_ONLY
- GL_READ_WRITE

〉 Unmap the buffer with:
GLboolean glUnmapBuffer(GLenum target);

14-October-2009
© Copyright Ian D. Romanick 2009

Now what?

b The vertex data is in a buffer object...how do we tell the GPU know where to get it?

Vertex Attribute Pointer

\Rightarrow Set the location and format of a vertex attribute with:

void glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *pointer);

Vertex Attribute Pointer

\Rightarrow Set the location and format of a vertex attribute with:

Vertex Attribute Pointer

\Rightarrow Set the location and format of a vertex attribute with:

Number of components in each element

Type of data (e.g., GL_FLOAT)

Vertex Attribute Pointer

Set the location and format of a vertex attribute with:

```
void glVertexAttribPointer(GLuint index,
GLint size, GLenum type,
GLboolean normalized, GLsizei stride,
const GLvoid *pointer);
```

For integer data, specifies whether it is normalized or not

Vertex Attribute Pointer

\Rightarrow Set the location and format of a vertex attribute with:

```
void glVertexAttribPointer(GLuint index,
GLint size, GLenum type,
GLboolean normalized, GLsizei stride,
const GLvoid *pointer);
```

Number of bytes from the start of one element to the start of the next

Vertex Attribute Pointer

Set the location and format of a vertex attribute with:

```
void glVertexAttribPointer(GLuint index,
GLint size, GLenum type,
GLboolean normalized, GLsizei stride,
const GLvoid *pointer);
```

Offset, in bytes, from the start of the buffer where the data starts

Enable Attribute

\Rightarrow Attributes that will be used must also be enabled:
void glEnableVertexAttribArray(GLuint index);
\Rightarrow Attributes can later be disabled:
void glDisableVertexAttribArray(GLuint index);

Setting Attribute Numbers

\downarrow GLSL uses names for attributes:
attribute vec4 color;
\downarrow The API uses numbers:
void glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *pointer);
\downarrow How do we connect the two?

Setting Attribute Numbers

b Bind the attribute name to the index we want:
void glBindAttribLocation(GLuint programObj, GLuint index, const GLchar *name);

- Can only call before linking the program
- Changes to attribute locations do not take effect until the program is linked (or linked again)

Drawing

¢ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Drawing

¢ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first, GLsizei count);

Sets the primitive type

Drawing

¢ Draw a series of vertices:

Number of vertices to draw

Selects which vertex in the buffer to start drawing with

Primitive Types

Image borrowed from "OpenGL Programming Guide".
14-October-2009
© Copyright Ian D. Romanick 2009

Primitive Types

Image borrowed from "OpenGL Programming Guide".
14-October-2009
© Copyright Ian D. Romanick 2009

References

b More information about I/O MMUs in general: http://en.wikipedia.org/wiki/IOMMU
> Nvidia whitepaper about using VBOs: http://developer.nvidia.com/object/using_VBOs.html

Linear Algebra Primer

b Three important data types:

- Scalar values
- Row / column vectors
- 1×4 and 4×1 are the most common sizes
- Square matrices
-4×4 is the most common size...to match the 1×4 \& 4×1 vectors

Notation

b Try to use the same notation as the textbook:

- Angle: θ (lower-case Greek)
- Scalar: s (lower-case, italic, serif)
- Vector or point: v (lower-case, bold, serif)
- Sometimes û is used to differentiate vectors from points
- Matrix: M (upper-case, bold, serif)
- Plane: $\pi: \mathbf{n} \cdot x+d$ (π : a vector and a scalar)
- Triangle: \triangle abc ($\triangle 3$ points)
- Line segment: ab (2 points)
- Geometric entity: A (upper-case, italic, serif)

Row Vectors

\These are special matrices that have multiple columns but only one row

- Example: $\left.\begin{array}{lll}5.0 & 3.14 & 37\end{array}\right]$
¢ Addition and subtraction is component-wise:
- Example: $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}9 & 10 & 11\end{array}\right]=\left[\begin{array}{lll}10 & 12 & 14\end{array}\right]$
- Both vectors must be the same size
\downarrow Operations with scalars also component-wise:
- Example: $3.2 \times\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}3.2 & 6.4 & 9.6\end{array}\right]$
$>$ Notice that vector multiplication is missing...

Column Vectors

b These are special matrices that have multiple rows but only one column

- Example: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
, Work just like row vectors
> Notationally convert a row to a column with a T in the exponent
- Example: \mathbf{v}^{T}
- We'll talk more about this notation later...

Vector Operations

\Rightarrow There are a few operations specific to vectors that are really important to graphics:

- Dot product
- Vector magnitude / normalization
- Cross product

Dot Product

¢ Component-wise multiply, then sum components

- Example:
$\left[\begin{array}{ll}2.3 & 1.2\end{array}\right) \cdot[1.7 \quad 6.5]=(2.3 * 1.7)+(1.2 * 6.5)=11.71$
- Noted as u $\mathbf{u} \cdot \mathbf{v}$ or $\langle\mathbf{u}, \mathbf{v}\rangle$
- Also known as the inner product or scalar product

Vector Magnitude

¢ Noted by vertical bars around the vector

- Like absolute value...which is the scalar magnitude
- Can also be thought of as the length of the vector

Square-root of dot-product of vector with itself

- Like absolute value
- Example: $\left.\begin{array}{c}\left.\left.\left[\begin{array}{ll}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right] \right\rvert\,=\sqrt{\left[\frac{\sqrt{2}}{2}\right.} \frac{\sqrt{2}}{2}\right] \cdot\left[\frac{\sqrt{2}}{2}\right. \\ \frac{\sqrt{2}}{2}\end{array}\right]=$

Normal

Normal is an overloaded term in graphics and linear algebra

- Sometimes it means a vector has unit length
- |u| = 1.0
- Can say the vector is "normalized"
- Sometimes it means a vector is perpendicular to a surface or another vector
- This mean the angle between the vectors is 90°
- Can say that the vectors are "normal to each other"
- Can say that the vectors are "orthogonal"
- Can combine for even more fun!
"Use normalized surface normals in the calculation." 14-October-2009
© Copyright Ian D. Romanick 2009

Normalize

\Rightarrow Can normalize a vector by dividing it by its magnitude

- Example: $\frac{\mathbf{u}}{|\mathbf{u}|}$
- Vector has the same direction, but the magnitude will be 1.0
- Also works with scalars

Dot Product

\downarrow Why is the dot product so interesting?

Dot Product

Why is the dot product so interesting?

- The dot product of two vectors is related to the cosine of the angle between those vectors
- Formally: u•v=|u| |v| $\cos \theta$
$>$ We often want to know the angle between two vectors
- This is the basis of all lighting calculations in 3D graphics!
$-(\mathbf{u} \cdot \mathbf{v}) /(|\mathbf{u}||\mathbf{v}|)=\cos \theta$

Cross Product

¢ From Wikipedia:

[T]he cross product is a binary operation on two vectors in a three-dimensional Euclidean space that results in another vector which is perpendicular to the plane containing the two input vectors.

- Noted as an \times between two vectors
- Calculated as:

$$
\mathbf{a} \times b=\left[\begin{array}{lll}
a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

- Not associative
- Anti-commutative: If $\mathbf{u} \times \mathbf{v}=\mathbf{w}$, then $\mathbf{u} \times \mathbf{v}=-\mathbf{w}$

${ }^{1}$ From http://en.wikipedia.org/wiki/Cross_product
14-October-2009
© Copyright Ian D. Romanick 2009

Cross Product

\downarrow Why is the cross product so interesting?

- Cross product of two vectors results in a new vector that is normal both
- The cross product of two vectors is related to the sine of the angle between the vectors
- Formally: $\mathbf{u} \times \mathbf{v}=|\mathbf{u}||\mathbf{v}| \sin \theta \mathbf{n}$

Matrices

Like vectors, but have multiple rows and columns

- Example: $\left[\begin{array}{cccc}1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0\end{array}\right]$
\Rightarrow Add and subtract like you would expect
- Like vectors, both matrices must be the same size...in both dimensions

Matrix Multiplication

¢ Special rules make matrix multiplication different from scalar multiplication

- NOT commutative! e.g., $\mathbf{M} \times \mathbf{N} \neq \mathbf{N} \times \mathbf{M}$
- Associative e.g., $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathrm{C}$
- Column count of first matrix must match row count of second matrix
- If \mathbf{M} is 4-by-3 matrix and \mathbf{N} is a 3-by-1 matrix, we can do $\mathbf{M} \times \mathbf{N}$ but not $\mathbf{N} \times \mathbf{M}$
- If the source matrices are n-by- m and m-by- p, the resulting matrix will be n-by-p

Matrix Multiplication

\rangle To calculate an element of the matrix, C, resulting from AB:

$$
\begin{aligned}
\mathbf{C}_{i j} & =\sum_{r=1}^{n} \mathbf{A}_{i r} \mathbf{B}_{r j} \\
& =\mathbf{A}_{i, 0} \mathbf{B}_{0, j}+\mathbf{A}_{i, 1} \mathbf{B}_{1, j}+\mathbf{A}_{i, 2} \mathbf{B}_{2, j}+\ldots+\mathbf{A}_{i, n} \mathbf{B}_{n, j}
\end{aligned}
$$

\Rightarrow What does this look like?

Matrix Multiplication

> To calculate an element of the matrix, C, resulting from $\mathbf{A B}$:

$$
\begin{aligned}
\mathbf{C}_{i j} & =\sum_{r=1}^{n} \mathbf{A}_{i r} \mathbf{B}_{r j} \\
& =\mathbf{A}_{i, 0} \mathbf{B}_{0, j}+\mathbf{A}_{i, 1} \mathbf{B}_{1, j}+\mathbf{A}_{i, 2} \mathbf{B}_{2, j}+\ldots+\mathbf{A}_{i, n} \mathbf{B}_{n, j}
\end{aligned}
$$

\Rightarrow What does this look like?

- The dot product of a row of A with a column of B!
- This is why the column count of A must match the row count of B...otherwise the dot product wouldn't work

Multiplicative Identity

b There is a multiplicative identity for matrices

$$
\mathbf{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & \vdots \\
\vdots & & \ddots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- Just like any other multiplicative identity, AI = A
- If you pretend that a scalar is a 1×1 matrix, this should make sense

Transpose

\& Rows become columns and columns become rows

- Noted with a T in the exponent position (e.g., \mathbf{M}^{T})
- Example:

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5 \\
6 & 7
\end{array}\right]^{T}=\left[\begin{array}{lll}
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right]
$$

Matrix Multiplication

\Rightarrow Can rewrite the dot product (inner product) of two row vectors as:

$$
s=\mathbf{u ~ v}^{\mathrm{T}}
$$

\Rightarrow Can write the outer product of two row vectors as:

$$
\mathbf{M}=\mathbf{u}^{\mathrm{T}} \mathbf{v}
$$

- Notation is $\mathbf{u} \otimes \mathbf{v}$

$$
\mathbf{u} \otimes \mathbf{v}=\left[\begin{array}{ccccc}
\mathbf{u}_{1} \mathbf{v}_{1} & \mathbf{u}_{1} \mathbf{v}_{2} & \mathbf{u}_{1} \mathbf{v}_{3} & \ldots & \mathbf{u}_{1} \mathbf{v}_{n} \\
\mathbf{u}_{2} \mathbf{v}_{1} & \mathbf{u}_{2} \mathbf{v}_{2} & \mathbf{u}_{2} \mathbf{v}_{3} & \ldots & \mathbf{u}_{2} \mathbf{v}_{n} \\
\ldots & \ldots & \ddots & & \ldots \\
\mathbf{u}_{m} \mathbf{v}_{1} & \mathbf{u}_{m} \mathbf{v}_{2} & \mathbf{u}_{m} \mathbf{v}_{3} & \ldots & \mathbf{u}_{m} \mathbf{v}_{n}
\end{array}\right]
$$

© Copyright Ian D. Romanick 2009

Matrix Multiplication

\triangleright Not commutative

$$
\mathbf{M} \times \mathbf{N} \neq \mathbf{N} \times \mathbf{M}
$$

\Rightarrow But...

$$
\mathbf{M} \times \mathbf{N}=\left(\mathbf{N}^{T} \times \mathbf{M}^{T}\right)^{T}
$$

» How is this useful?

Matrix Multiplication

> Not commutative

$$
\mathbf{M} \times \mathbf{N} \neq \mathbf{N} \times \mathbf{M}
$$

© But...

$$
\mathbf{M} \times \mathbf{N}=\left(\mathbf{N}^{T} \times \mathbf{M}^{T}\right)^{T}
$$

¢ How is this useful?

- Assume v is a vector we want to transform by a matrix M, but we only have M^{T} in our program...

$$
\mathbf{M} \times \mathbf{v}=\left(\mathbf{v}^{T} \times \mathbf{M}^{T}\right)^{T}
$$

- A vector and its transpose are represented the same way (vec4 in GLSL), so we don't have to do the transpose of the matrix

References

http://en.wikipedia.org/wiki/Matrix_multiplication http://en.wikipedia.org/wiki/Dot_product http://en.wikipedia.org/wiki/Cross_product http://en.wikipedia.org/wiki/Outer_product

Rotation

Δ Rotation around the Z-axis

- If θ is 0°, this is the identity
matrix $\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
\Rightarrow Rotation around the Y -axis $\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotation

¢ From the previous equations, we can rotate using 4 multiplies and 2 adds, but a matrix multiply requires 16 multiplies and 12 adds
$-x^{\prime}=x \cos \theta+y \sin \theta$
$-y^{\prime}=-x \sin \theta+y \cos \theta$

- $z^{\prime}=z$
\Rightarrow Why use the matrix method?

Rotation

\Rightarrow A series of rotations can be implemented as:

$$
\begin{aligned}
\mathbf{v}^{\prime} & =\mathbf{M}_{1} \mathbf{v} \\
\mathbf{v}^{\prime \prime} & =\mathbf{M}_{2} \mathbf{v}^{\prime} \\
\mathbf{v}^{\prime \prime} & =\mathbf{M}_{3} \mathbf{v}^{\prime \prime}
\end{aligned}
$$

\Rightarrow Which is the same as:

$$
\mathbf{M}_{3}\left(\mathbf{M}_{2}\left(\mathbf{M}_{1} \mathbf{v}\right)\right)
$$

\Rightarrow What can we do with this?

Rotation

\Rightarrow A series of rotations can be implemented as:

$$
\begin{aligned}
\mathbf{v}^{\prime} & =\mathbf{M}_{1} \mathbf{v} \\
\mathbf{v}^{\prime} & =\mathbf{M}_{2} \mathbf{v}^{\prime} \\
\mathbf{v}^{\prime \prime} & =\mathbf{M}_{3} \mathbf{v}^{\prime \prime}
\end{aligned}
$$

\Rightarrow Which is the same as:

$$
\mathbf{M}_{3}\left(\mathbf{M}_{2}\left(\mathbf{M}_{1} \mathbf{v}\right)\right)
$$

\Rightarrow What can we do with this?
$\left(\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}\right) \mathbf{v}$

- Matrix multiplication is associative!

14-October-2009
© Copyright Ian D. Romanick 2009

Rotation

\downarrow A series of rotations can be implemented as:

$$
\begin{aligned}
\mathbf{v}^{\prime} & =\mathbf{M}_{1} \mathbf{v} \\
\mathbf{v}^{\prime \prime} & =\mathbf{M}_{\mathbf{2}} \mathbf{v}^{\prime} \\
\mathbf{v}^{\prime \prime} & =\mathbf{M}_{3} \mathbf{v}^{\prime \prime}
\end{aligned}
$$

\searrow Which is the same as:
$\mathbf{M}_{3}\left(\mathbf{M}_{2}\left(\mathbf{M}_{1} \mathbf{v}\right)\right)$
Notice that the matrices are composed in the reverse order of how they are applied to the vector!
\downarrow What can we do with this?
$\left(\mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}\right) \mathbf{v}$

- Matrix multiplication is associative!

Arbitrary Rotation

\Rightarrow Given a vector, v, and an angle, θ, we can create an arbitrary rotation matrix:

$$
\begin{gathered}
\tilde{\mathbf{V}}=\left[\begin{array}{cccc}
0 & -\mathbf{v}_{\mathrm{z}} & \mathbf{v}_{\mathrm{y}} & 0 \\
\mathbf{v}_{\mathrm{z}} & 0 & -\mathbf{v}_{\mathrm{x}} & 0 \\
-\mathbf{v}_{\mathrm{y}} & \mathbf{v}_{\mathrm{x}} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{R}=(\mathbf{I} \cos \theta)-((1-\cos \theta)(\mathbf{v} \otimes \mathbf{v}))+(\tilde{\mathbf{V}} \sin \theta)
\end{gathered}
$$

Translation

\Rightarrow Points are stored as $\mathbf{p}=\left[\begin{array}{lll}x & y z & 1\end{array}\right]$
\Rightarrow Remember the definition of matrix multiplication:

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{x}}{ }^{\prime}=\mathbf{p}_{\mathrm{x}} \mathbf{M}_{11}+\mathbf{p}_{\mathrm{y}} \mathbf{M}_{12}+\mathbf{p}_{\mathrm{z}} \mathbf{M}_{13}+\mathbf{p}_{\mathrm{w}} \mathbf{M}_{14} \\
& \mathbf{p}_{\mathrm{y}}{ }^{\prime}=\mathbf{p}_{\mathrm{x}} \mathbf{M}_{21}+\mathbf{p}_{\mathrm{y}} \mathbf{M}_{22}+\mathbf{p}_{\mathrm{z}} \mathbf{M}_{23}+\mathbf{p}_{\mathrm{w}} \mathbf{M}_{24} \\
& \mathbf{p}_{z}{ }^{\prime}=\mathbf{p}_{\mathbf{x}} \mathbf{M}_{31}+\mathbf{p}_{\mathbf{y}} \mathbf{M}_{32}+\mathbf{p}_{\mathbf{z}} \mathbf{M}_{33}+\mathbf{p}_{\mathrm{w}} \mathbf{M}_{34} \\
& \mathbf{p}_{\mathrm{w}}^{\prime}=\mathbf{p}_{\mathrm{x}} \mathbf{M}_{41}+\mathbf{p}_{\mathrm{y}} \mathbf{M}_{42}+\mathbf{p}_{\mathrm{z}} \mathbf{M}_{43}+\mathbf{p}_{\mathrm{w}} \mathbf{M}_{44}
\end{aligned}
$$

\Rightarrow Since \mathbf{p}_{w} is always 1 , the $4^{\text {h }}$ column of the matrix acts as a translation

Scaling

b To scale a vector, multiply each component by a scale factor
$\mathbf{M}=\left[\begin{array}{cccc}\mathbf{s}_{\mathrm{x}} & 0 & 0 & 0 \\ 0 & \mathbf{s}_{\mathrm{y}} & 0 & 0 \\ 0 & 0 & \mathbf{s}_{\mathrm{z}} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Coordinate Spaces

\downarrow Coordinates are always relative to some "space"

- Object space: Local coordinate system of the object
- World space: Global coordinate system relative to the 3D "world"
- Eye / camera space: Coordinate system relative to the viewer

』 When we translate objects relative to other objects, we may talk about other spaces

- If the hand of a 3D model is rotated relative to the arm of the model, we may talk about "hand-space" or "arm-space"

Orthonormal Basis

> It's a mouthful....what does it mean?
\Rightarrow A vector space where all of the components are orthogonal to each other, and each is normal

- Normal meaning unit length
- Orthogonal meaning at right angles
- The other meaning of normal
\Rightarrow Every pure rotation matrix (i.e., no scaling) is an orthonormal basis
- As is the identity matrix

Viewing

¢ Q: Given a world position for a camera, a world position to point the camera at, and an "up" direction, how can we construct a transformation using just rotations and translations?

Viewing

Q Q: Given a world position for a camera, a world position to point the camera at, and an "up" direction, how can we construct a transformation using just rotations and translations?
A: We can't. We need 3 vectors to construct an orthonormal basis

- [Hughes 99] presents a method to construct from just one vector

Viewing

> Given:

- e: Position of the eye (or camera) in world-space
- v: The point being viewed
- u: the "up" direction
\Rightarrow Calculate the unit vector from the viewpoint to the eye:

$$
\begin{aligned}
\mathbf{f}^{\prime} & =\mathbf{v}-\mathbf{e} \\
\mathbf{f} & =\frac{\mathbf{f}^{\prime}}{\left|\mathbf{f}^{\prime}\right|}
\end{aligned}
$$

- This is the Z axis

14-October-2009
© Copyright Ian D. Romanick 2009

Viewing

¢ Calculate a vector orthogonal to the Z-axis and the up vector:

$$
\mathbf{s}=\mathbf{f} \times \mathbf{u}
$$

- This is the X -axis

Viewing

¢ Calculate a vector orthogonal to the Z-axis and the up vector:

$$
\mathbf{s}=\mathbf{f} \times \mathbf{u}
$$

- This is the X -axis
© Calculate a vector orthogonal to the X-axis and the Z-axis:

$$
\mathbf{t}=\mathbf{s} \times \mathbf{f}
$$

- This is the Y -axis
- Why can't we just use u?

Viewing

\Rightarrow Drop these vectors into a matrix:

$$
\mathbf{M}_{\mathrm{v}}=\left[\begin{array}{cccc}
\mathbf{s}_{0} & \mathbf{s}_{1} & \mathbf{s}_{2} & 0 \\
\mathbf{t}_{0} & \mathbf{t}_{1} & \mathbf{t}_{2} & 0 \\
-\mathbf{f}_{0} & -\mathbf{f}_{1} & -\mathbf{f}_{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1 & 0 & 0 & -\mathbf{e}_{0} \\
0 & 1 & 0 & -\mathbf{e}_{1} \\
0 & 0 & 1 & -\mathbf{e}_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The translation moves the eye to the origin

References

General information about rotation matrices and orthonormal bases:
http://en.wikipedia.org/wiki/Rotation_matrix
http://www.wikipedia.org/Orthonormal_basis
Really good explanation of arbitrary rotation matrices:
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
Hughes, J. F., and Möller, T. Building an Orthonormal Basis from a
Unit Vector. Journal of Graphics Tools 4, 4 (1999), 33-35.
http://www.cs.brown.edu/research/pubs/authors/john_f._hughes.html

Projection

\Rightarrow Once objects are transformed to camera-space, they're still 3D

- The screen is still 2D
- Camera parameters (e.g., field of view) need to be applied
¢ Three steps remain:
- Projection from camera space to normalized device coordinates (NDC)
- Perspective divide
- Conversion from NDC to screen coordinates
- Remaps the ± 1 cube to (0,0)-(width, height)

14-October-2009
© Copyright Ian D. Romanick 2009

Projection

¢ Perspective:

- Simulates visual foreshortening caused by the way light projects onto the back of the eye
- Represents the view volume with a frustum (a pyramid with the top cut off)
- The real work is done by dividing X and Y by Z
¢ Orthographic:
- Represents the view volume with a cube
- Also called parallel projection because lines that are parallel before the projection remain parallel after

Perspective Projection

¢ A few parameters control the view volume:

- Near: Distance from the camera to the near viewing plane. Objects in front of this plane will be clipped
- Far: Distance from the camera to the far viewing plane. Objects behind this plane will be clipped
- θ : Field-of-view in the Y direction
- Aspect ratio: Ratio of the width of the view to the height of the view

Perspective Projection

$$
\mathbf{M}_{p}=\left[\begin{array}{cccc}
\frac{f}{\text { aspect }} & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & -\frac{\text { far }+ \text { near }}{\text { far }- \text { near }} & \left.-\frac{\theta}{2}\right) \\
0 & 0 & -1 & 0
\end{array}\right]
$$

- Limited form of projection matrix that assumes symmetry in X and Y directions
- near and far are distances
- We're actually looking down the negative Z axis in camera space

14-October-2009
© Copyright Ian D. Romanick 2009

Putting it all together

¢ Typically have a modeling transform, a viewing transform, and a projection

- Combine these into a single "model-view-projection" matrix: $\mathbf{M}_{\mathrm{mp}}=\mathbf{M}_{\mathrm{p}} \times \mathbf{M}_{\mathrm{v}} \times \mathbf{M}_{\mathrm{m}}$
- Transform a vertex by this single matrix: uniform mat4 mvp; void main(void)
\{
gl_Position = mvp * gl_Vertex;
\}

References

http://en.wikipedia.org/wiki/3D_projection (esp. Third step: perspective transform). http://en.wikipedia.org/wiki/Orthographic_projection_\(geometry\) http://en.wikipedia.org/wiki/Isometric_projection

Next week...

〉 Quiz \#1

- Will cover material from last week and this week
b Hidden surface removal / occlusion
- Backface culling
- Painters algorithm
- Z-buffer
- Frustum culling

』 Assignment \#2, part 1

Legal Statement

This work represents the view of the authors and does not necessarily represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.
Other company, product, and service names may be trademarks or service marks of others.

