
© Copyright Ian D. Romanick 2009

14-October-2009

VGP351 – Week 2

⇨ Agenda:
­ Getting data to the GPU
­ Types of primitives
­ Transformations

­ Modeling
­ Viewing
­ Projection

© Copyright Ian D. Romanick 2009

14-October-2009

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

© Copyright Ian D. Romanick 2009

14-October-2009

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

GPU accesses
this data directly

© Copyright Ian D. Romanick 2009

14-October-2009

Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

I/O Devices System Chipset

© Copyright Ian D. Romanick 2009

14-October-2009

Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

GPU System Chipset

Video Memory

© Copyright Ian D. Romanick 2009

14-October-2009

Unified Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

I/O Devices
System Chipset

GPU

© Copyright Ian D. Romanick 2009

14-October-2009

Memory Map

Main Memory

CPU

MMU

Physical Addresses

Virtual Addresses

GPU

AGP GART

Device
Virtual Addresses

© Copyright Ian D. Romanick 2009

14-October-2009

Memory Map

Main Memory

CPU

MMU

Physical Addresses

Virtual Addresses

GPU

AGP GARTGART

Device
Virtual Addresses

Graphics Address
Remapping Table

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Memory

⇨ Practically, the GPU can only access:
­ Memory physically on the graphics card
­ Memory mapped in the GART

⇨ To get GART or card memory, we have to
allocate it using the driver

­ Only the driver knows what kind of memory to use
­ ...but we have to give it some hints

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Memory

⇨ In OpenGL this memory is called buffer object
­ It is used somewhat like a file:

­ Bulk I/O via accessor routines
­ Direct mapping and access via a pointer

© Copyright Ian D. Romanick 2009

14-October-2009

Buffer Objects

⇨ Generate “names” for the buffer objects:
glGenBuffers(GLsizei num, Gluint *names);

⇨ “Bind” a buffer for use:
glBindBuffer(GLenum target, GLuint name);

­ target selects which buffer we're talking about
­ GL_ARRAY_BUFFER is used for vertex data

­ GL_ELEMENT_ARRAY_BUFFER is used for vertex indices
­ More on that later...

­ There are other targets we'll cover later in the term

­ Binding creates the object, but it still has no storage

© Copyright Ian D. Romanick 2009

14-October-2009

Buffer Objects

⇨ Storage is created and optionally initialized with:
void glBufferData(GLenum target,
 GLsizeiptr size, const GLvoid *data,
 GLenum usage);

­ usage tells the GL how the app will utilize the buffer

⇨ Storage is updated with:
void glBufferSubData(GLenum target,
 GLintptr offset, GLsizeiptr size,
 const GLvoid *data);

© Copyright Ian D. Romanick 2009

14-October-2009

Buffer Objects

⇨ Usage conveys information along two axes:
­ Data “frequency”:

­ Stream – data is specified once and used a few times

­ Static – data is specified ones and used many times

­ Dynamic – data is specified and used many times

­ Data “usage”:
­ Draw – data used as source for drawing

­ Read – data copied from GL and read back to client

­ Copy – data copied from GL and used as source for drawing

­ Combine these to create the enums (e.g.,
GL_STATIC_DRAW)

© Copyright Ian D. Romanick 2009

14-October-2009

© Copyright Ian D. Romanick 2009

14-October-2009

Buffer Objects

⇨ Memory backing the buffer can be mapped into
CPU space:
GLvoid *glMapBuffer(GLenum target,
 GLenum access);

­ access tells the driver how the application will access
the mapped buffer:

­ GL_READ_ONLY

­ GL_WRITE_ONLY

­ GL_READ_WRITE

⇨ Unmap the buffer with:
GLboolean glUnmapBuffer(GLenum target);

© Copyright Ian D. Romanick 2009

14-October-2009

Now what?

⇨ The vertex data is in a buffer object...how do we
tell the GPU know where to get it?

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

In the API,
attributes are

numbered

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Number of components
in each element

Type of data (e.g.,
GL_FLOAT)

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

For integer data,
specifies whether it
is normalized or not

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Number of bytes from
the start of one element
to the start of the next

© Copyright Ian D. Romanick 2009

14-October-2009

Vertex Attribute Pointer

⇨ Set the location and format of a vertex attribute
with:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Offset, in bytes, from the
start of the buffer where

the data starts

© Copyright Ian D. Romanick 2009

14-October-2009

Enable Attribute

⇨ Attributes that will be used must also be
enabled:
void glEnableVertexAttribArray(GLuint index);

⇨ Attributes can later be disabled:
void glDisableVertexAttribArray(GLuint index);

© Copyright Ian D. Romanick 2009

14-October-2009

Setting Attribute Numbers

⇨ GLSL uses names for attributes:
attribute vec4 color;

⇨ The API uses numbers:
void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

⇨ How do we connect the two?

© Copyright Ian D. Romanick 2009

14-October-2009

Setting Attribute Numbers

⇨ Bind the attribute name to the index we want:
void glBindAttribLocation(GLuint programObj,
 GLuint index, const GLchar *name);

­ Can only call before linking the program
­ Changes to attribute locations do not take effect until

the program is linked (or linked again)

© Copyright Ian D. Romanick 2009

14-October-2009

Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

© Copyright Ian D. Romanick 2009

14-October-2009

Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

Sets the primitive type

© Copyright Ian D. Romanick 2009

14-October-2009

Drawing

⇨ Draw a series of vertices:
void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

Selects which vertex
in the buffer to start

drawing with

Number of
vertices to draw

© Copyright Ian D. Romanick 2009

14-October-2009

Primitive Types

Image borrowed from “OpenGL Programming Guide”.

© Copyright Ian D. Romanick 2009

14-October-2009

Primitive Types

Image borrowed from “OpenGL Programming Guide”.

X X X

© Copyright Ian D. Romanick 2009

14-October-2009

References

⇨ More information about I/O MMUs in general:
http://en.wikipedia.org/wiki/IOMMU

⇨ Nvidia whitepaper about using VBOs:
http://developer.nvidia.com/object/using_VBOs.html

http://en.wikipedia.org/wiki/IOMMU
http://developer.nvidia.com/object/using_VBOs.html

© Copyright Ian D. Romanick 2009

14-October-2009

Linear Algebra Primer

⇨ Three important data types:
­ Scalar values
­ Row / column vectors

­ 1x4 and 4x1 are the most common sizes

­ Square matrices
­ 4x4 is the most common size...to match the 1x4 & 4x1

vectors

© Copyright Ian D. Romanick 2009

14-October-2009

Notation

⇨ Try to use the same notation as the textbook:
­ Angle:  (lower-case Greek)
­ Scalar: s (lower-case, italic, serif)
­ Vector or point: v (lower-case, bold, serif)

­ Sometimes û is used to differentiate vectors from points

­ Matrix: M (upper-case, bold, serif)
­ Plane: : nx + d (: a vector and a scalar)
­ Triangle: △abc (△ 3 points)
­ Line segment: ab (2 points)
­ Geometric entity: A (upper-case, italic, serif)

© Copyright Ian D. Romanick 2009

14-October-2009

Row Vectors

⇨ These are special matrices that have multiple
columns but only one row

­ Example:

⇨ Addition and subtraction is component-wise:
­ Example:
­ Both vectors must be the same size

⇨ Operations with scalars also component-wise:
­ Example:

⇨ Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3][9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

© Copyright Ian D. Romanick 2009

14-October-2009

Column Vectors

⇨ These are special matrices that have multiple
rows but only one column

­ Example:

⇨ Work just like row vectors
⇨ Notationally convert a row to a column with a T

in the exponent
­ Example: vT

­ We'll talk more about this notation later...

[
1
2
3]

© Copyright Ian D. Romanick 2009

14-October-2009

Vector Operations

⇨ There are a few operations specific to vectors
that are really important to graphics:

­ Dot product
­ Vector magnitude / normalization
­ Cross product

© Copyright Ian D. Romanick 2009

14-October-2009

Dot Product

⇨ Component-wise multiply, then sum components
­ Example:

­ Noted as uv or u, v
­ Also known as the inner product or scalar product

[2.3 1.2]⋅[1.7 6.5]=2.3∗1.71.2∗6.5=11.71

© Copyright Ian D. Romanick 2009

14-October-2009

Vector Magnitude

⇨ Noted by vertical bars around the vector
­ Like absolute value...which is the scalar magnitude
­ Can also be thought of as the length of the vector

⇨ Square-root of dot-product of vector with itself
­ Like absolute value
­ Example: ∣[2

2
2
2]∣=[2

2
2
2]⋅[2

2
2
2]=

 2
2 

2

 2
2 

2

= 2
4


2
4
=1

© Copyright Ian D. Romanick 2009

14-October-2009

Normal

⇨ Normal is an overloaded term in graphics and
linear algebra

­ Sometimes it means a vector has unit length
­ |u| = 1.0
­ Can say the vector is “normalized”

­ Sometimes it means a vector is perpendicular to a
surface or another vector

­ This mean the angle between the vectors is 90˚
­ Can say that the vectors are “normal to each other”
­ Can say that the vectors are “orthogonal”

­ Can combine for even more fun!
­ “Use normalized surface normals in the calculation.”

© Copyright Ian D. Romanick 2009

14-October-2009

Normalize

⇨ Can normalize a vector by dividing it by its
magnitude

­ Example:

­ Vector has the same direction, but the magnitude will
be 1.0

­ Also works with scalars

u
∣u∣

© Copyright Ian D. Romanick 2009

14-October-2009

Dot Product

⇨ Why is the dot product so interesting?

© Copyright Ian D. Romanick 2009

14-October-2009

Dot Product

⇨ Why is the dot product so interesting?
­ The dot product of two vectors is related to the cosine

of the angle between those vectors
­ Formally: uv = |u| |v| cos 

⇨ We often want to know the angle between two
vectors

­ This is the basis of all lighting calculations in 3D
graphics!

­ (uv) / (|u| |v|) = cos 

© Copyright Ian D. Romanick 2009

14-October-2009

Cross Product

⇨ From Wikipedia:
[T]he cross product is a binary operation on two vectors in a
three-dimensional Euclidean space that results in another
vector which is perpendicular to the plane containing the two
input vectors.

­ Noted as an × between two vectors
­ Calculated as:

­ Not associative
­ Anti-commutative: If u×v = w, then u×v = -w

a×b=[ay bz−az by az bx−ax bz ax by−ay bx]

1 From http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Cross_product

© Copyright Ian D. Romanick 2009

14-October-2009

Cross Product

⇨ Why is the cross product so interesting?
­ Cross product of two vectors results in a new vector

that is normal both
­ The cross product of two vectors is related to the sine

of the angle between the vectors
­ Formally: u×v = |u| |v| sin  n

θ

n

u

v

© Copyright Ian D. Romanick 2009

14-October-2009

Matrices

⇨ Like vectors, but have multiple rows and
columns

­ Example:

⇨ Add and subtract like you would expect
­ Like vectors, both matrices must be the same size...in

both dimensions

[
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

]

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ Special rules make matrix multiplication different
from scalar multiplication

­ NOT commutative! e.g., M×N ≠ N×M
­ Associative e.g., A(BC) = (AB)C
­ Column count of first matrix must match row count of

second matrix
­ If M is 4-by-3 matrix and N is a 3-by-1 matrix, we

can do M×N but not N×M
­ If the source matrices are n-by-m and m-by-p, the

resulting matrix will be n-by-p

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ To calculate an element of the matrix, C,
resulting from AB:

⇨ What does this look like?

Cij = r=1
n A ir Brj

= A i ,0 B0, jA i ,1 B1, jA i ,2 B2, j...Ai ,n Bn , j

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ To calculate an element of the matrix, C,
resulting from AB:

⇨ What does this look like?
­ The dot product of a row of A with a column of B!
­ This is why the column count of A must match the row

count of B...otherwise the dot product wouldn't work

Cij = r=1
n A ir Brj

= A i ,0 B0, jA i ,1 B1, jA i ,2 B2, j...Ai ,n Bn , j

© Copyright Ian D. Romanick 2009

14-October-2009

Multiplicative Identity

⇨ There is a multiplicative identity for matrices

­ Just like any other multiplicative identity, AI = A
­ If you pretend that a scalar is a 1×1 matrix, this

should make sense

I=[
1 0 ⋯ 0
0 1 ⋮
⋮ ⋱ 0
0 0 ⋯ 1

]

© Copyright Ian D. Romanick 2009

14-October-2009

Transpose

⇨ Rows become columns and columns become
rows

­ Noted with a T in the exponent position (e.g., MT)
­ Example:

[
2 3
4 5
6 7]

T

=[2 4 6
3 5 7]

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ Can rewrite the dot product (inner product) of
two row vectors as:

⇨ Can write the outer product of two row vectors
as:

­ Notation is u⊗v

s=u vT

M=uT v

u⊗v=[
u1 v1 u1 v2 u1 v3 ... u1 vn

u2 v1 u2 v2 u2 v3 ... u2 vn

⋯ ⋯ ⋱ ⋯
um v1 um v2 um v3 ... um vn

]

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ Not commutative

⇨ But...

⇨ How is this useful?

M×N≠N×M

M×N=NT×MT 
T

© Copyright Ian D. Romanick 2009

14-October-2009

Matrix Multiplication

⇨ Not commutative

⇨ But...

⇨ How is this useful?
­ Assume v is a vector we want to transform by a matrix

M, but we only have MT in our program...

­ A vector and its transpose are represented the same
way (vec4 in GLSL), so we don't have to do the
transpose of the matrix

M×N≠N×M

M×N=NT×MT 
T

M×v=vT×MT 
T

© Copyright Ian D. Romanick 2009

14-October-2009

References

http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Outer_product

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Outer_product

© Copyright Ian D. Romanick 2009

14-October-2009

Rotation

⇨ Rotation around the Z-axis
­ If  is 0˚, this is the identity

matrix [
cos −sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

]

[
cos 0 sin 0

0 1 0 0
−sin 0 cos 0

0 0 0 1
]

⇨ Rotation around the Y-axis

© Copyright Ian D. Romanick 2009

14-October-2009

Rotation

⇨ From the previous equations, we can rotate
using 4 multiplies and 2 adds, but a matrix
multiply requires 16 multiplies and 12 adds

­ x' = x cos  + y sin 
­ y' = -x sin  + y cos 
­ z' = z

⇨ Why use the matrix method?

© Copyright Ian D. Romanick 2009

14-October-2009

Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '

M3 M2M1 v 

© Copyright Ian D. Romanick 2009

14-October-2009

Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

­ Matrix multiplication is associative!

M3 M2M1 v 

M3 M2 M1v

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '

© Copyright Ian D. Romanick 2009

14-October-2009

Rotation

⇨ A series of rotations can be implemented as:

⇨ Which is the same as:

⇨ What can we do with this?

­ Matrix multiplication is associative!

M3 M2M1 v 

M3 M2 M1v

v '=M1 v
v ' '=M2 v '

v ' ' '=M3 v ' '
Notice that the matrices
are composed in the
reverse order of how
they are applied to the
vector!

© Copyright Ian D. Romanick 2009

14-October-2009

Arbitrary Rotation

⇨ Given a vector, v, and an angle, , we can
create an arbitrary rotation matrix:

V=[
0 −vz vy 0
vz 0 −vx 0

−vy vx 0 0
0 0 0 1

]
R=I cos −1−cosv⊗v  V sin 

© Copyright Ian D. Romanick 2009

14-October-2009

Translation

⇨ Points are stored as p = [x y z 1]
⇨ Remember the definition of matrix multiplication:

⇨ Since p
w
 is always 1, the 4th column of the matrix

acts as a translation

px ' = px M11py M12pz M13pw M14

py ' = px M21py M22pz M23pw M24

pz ' = px M31py M32pz M33pw M34

pw ' = px M41py M42pz M43pw M44

© Copyright Ian D. Romanick 2009

14-October-2009

Scaling

⇨ To scale a vector, multiply
each component by a scale
factor M=[

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

]

© Copyright Ian D. Romanick 2009

14-October-2009

Coordinate Spaces

⇨ Coordinates are always relative to some “space”
­ Object space: Local coordinate system of the object
­ World space: Global coordinate system relative to the

3D “world”
­ Eye / camera space: Coordinate system relative to

the viewer

⇨ When we translate objects relative to other
objects, we may talk about other spaces

­ If the hand of a 3D model is rotated relative to the arm
of the model, we may talk about “hand-space” or
“arm-space”

© Copyright Ian D. Romanick 2009

14-October-2009

Orthonormal Basis

⇨ It's a mouthful...what does it mean?
⇨ A vector space where all of the components are

orthogonal to each other, and each is normal
­ Normal meaning unit length
­ Orthogonal meaning at right angles

­ The other meaning of normal

⇨ Every pure rotation matrix (i.e., no scaling) is an
orthonormal basis

­ As is the identity matrix

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Q: Given a world position for a camera, a world
position to point the camera at, and an “up”
direction, how can we construct a transformation
using just rotations and translations?

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Q: Given a world position for a camera, a world
position to point the camera at, and an “up”
direction, how can we construct a transformation
using just rotations and translations?

⇨ A: We can't. We need 3 vectors to construct an
orthonormal basis

­ [Hughes 99] presents a method to construct from just
one vector

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Given:
­ e: Position of the eye (or camera) in world-space
­ v: The point being viewed
­ u: the “up” direction

⇨ Calculate the unit vector from the viewpoint to
the eye:

­ This is the Z axis

f ' = v−e

f =
f '
∣f '∣

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Calculate a vector orthogonal to the Z-axis and
the up vector:

­ This is the X-axis

s=f×u

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Calculate a vector orthogonal to the Z-axis and
the up vector:

­ This is the X-axis

⇨ Calculate a vector orthogonal to the X-axis and
the Z-axis:

­ This is the Y-axis
­ Why can't we just use u?

t=s×f

s=f×u

© Copyright Ian D. Romanick 2009

14-October-2009

Viewing

⇨ Drop these vectors into a matrix:

­ The translation moves the eye to the origin

Mv=[
s0 s1 s2 0
t0 t1 t2 0
−f0 −f1 −f2 0

0 0 0 1
]×[

1 0 0 −e0

0 1 0 −e1

0 0 1 −e2

0 0 0 1
]

© Copyright Ian D. Romanick 2009

14-October-2009

References

General information about rotation matrices and orthonormal bases:

http://en.wikipedia.org/wiki/Rotation_matrix

http://www.wikipedia.org/Orthonormal_basis

Really good explanation of arbitrary rotation matrices:
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm

Hughes, J. F., and Möller, T. Building an Orthonormal Basis from a
Unit Vector. Journal of Graphics Tools 4, 4 (1999), 33-35.
http://www.cs.brown.edu/research/pubs/authors/john_f._hughes.html

http://en.wikipedia.org/wiki/Rotation_matrix
http://www.wikipedia.org/Orthonormal_basis
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
http://www.cs.brown.edu/research/pubs/authors/john_f._hughes.html

© Copyright Ian D. Romanick 2009

14-October-2009

Projection

⇨ Once objects are transformed to camera-space,
they're still 3D

­ The screen is still 2D
­ Camera parameters (e.g., field of view) need to be

applied

⇨ Three steps remain:
­ Projection from camera space to normalized device

coordinates (NDC)
­ Perspective divide
­ Conversion from NDC to screen coordinates

­ Remaps the ±1 cube to (0,0)-(width, height)

© Copyright Ian D. Romanick 2009

14-October-2009

Projection

⇨ Perspective:
­ Simulates visual foreshortening caused by the way

light projects onto the back of the eye
­ Represents the view volume with a frustum (a

pyramid with the top cut off)
­ The real work is done by dividing X and Y by Z

⇨ Orthographic:
­ Represents the view volume with a cube
­ Also called parallel projection because lines that are

parallel before the projection remain parallel after

© Copyright Ian D. Romanick 2009

14-October-2009

Perspective Projection

⇨ A few parameters control the view volume:
­ Near: Distance from the camera to the near viewing

plane. Objects in front of this plane will be clipped
­ Far: Distance from the camera to the far viewing

plane. Objects behind this plane will be clipped

w

h

Near

Far

­ : Field-of-view in
the Y direction

­ Aspect ratio: Ratio
of the width of the
view to the height
of the view

© Copyright Ian D. Romanick 2009

14-October-2009

Perspective Projection

f =cot  2 

M p=[
f

aspect
0 0 0

0 f 0 0

0 0 −
farnear
far−near

−
2×far×near

far−near
0 0 −1 0

]
­ Limited form of projection matrix that assumes

symmetry in X and Y directions
­ near and far are distances

­ We're actually looking down the negative Z axis in camera
space

© Copyright Ian D. Romanick 2009

14-October-2009

Putting it all together

⇨ Typically have a modeling transform, a viewing
transform, and a projection

­ Combine these into a single “model-view-projection”
matrix: M

mvp
 = M

p
  M

v
  M

m

­ Transform a vertex by this single matrix:
uniform mat4 mvp;
void main(void)
{
 gl_Position = mvp * gl_Vertex;
}

© Copyright Ian D. Romanick 2009

14-October-2009

References

http://en.wikipedia.org/wiki/3D_projection (esp. Third step:
perspective transform).

http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29

http://en.wikipedia.org/wiki/Isometric_projection

http://en.wikipedia.org/wiki/3D_projection
http://en.wikipedia.org/wiki/Orthographic_projection_%28geometry%29
http://en.wikipedia.org/wiki/Isometric_projection

© Copyright Ian D. Romanick 2009

14-October-2009

Next week...

⇨ Quiz #1
­ Will cover material from last week and this week

⇨ Hidden surface removal / occlusion
­ Backface culling
­ Painters algorithm
­ Z-buffer
­ Frustum culling

⇨ Assignment #2, part 1

© Copyright Ian D. Romanick 2009

14-October-2009

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

